Treffer: Profile-driven energy reduction in Network-on-Chips
Computation Department University of Manchester, United Kingdom
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
Reducing energy consumption of a Network-on-Chip (NoC) is a critical design goal, especially for power-constrained embedded systems. In response, prior research has proposed several circuit/architectural level mechanisms to reduce NoC power consumption. This paper considers the problem from a different perspective and demonstrates that compiler analysis can be very helpful for enhancing the effectiveness of a hardware-based link power management mechanism by increasing the duration of communication links' idle periods. The proposed profile-based approach achieves its goal by maximizing the communication link reuse through compiler-directed, static message re-routing. That is, it clusters the required data communications into a small set of communication links at any given time, which increases the idle periods for the remaining communication links in the network. This helps hardware shut down more communication links and their corresponding buffers to reduce leakage power. The current experimental evaluation, with twelve data-intensive embedded applications, shows that the proposed profile-driven compiler approach reduces leakage energy by more than 35% (on average) as compared to a pure hardware-based link power management scheme.