Result: Mining structural databases : An evolutionary multi-objetive conceptual clustering methodology

Title:
Mining structural databases : An evolutionary multi-objetive conceptual clustering methodology
Source:
Applications of evolutionary computing (EvoWorkshops 2006)Lecture notes in computer science. :159-171
Publisher Information:
Berlin: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 21 ref 1
Original Material:
INIST-CNRS
Subject Terms:
Bioinformatics, Bioinformatique, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Biologie moleculaire et cellulaire, Molecular and cellular biology, Génétique moléculaire, Molecular genetics, Expression génique, Gene expression, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Analyse amas, Cluster analysis, Analisis cluster, Analyse donnée, Data analysis, Análisis datos, Annotation, Anotación, Apprentissage non supervisé, Unsupervised learning, Base donnée, Database, Base dato, Bioinformatique, Bioinformatics, Bioinformática, Classification non supervisée, Unsupervised classification, Clasificación no supervisada, Disponibilité, Availability, Disponibilidad, Découverte connaissance, Knowledge discovery, Descubrimiento conocimiento, Expression génique, Gene expression, Expresión genética, Extraction information, Information extraction, Extracción información, Fouille donnée, Data mining, Busca dato, Génie génétique, Genetic engineering, Ingeniería genética, Mimique, Facial expression, Mímica, Ontologie, Ontology, Ontología, Optimisation, Optimization, Optimización, Programmation multiobjectif, Multiobjective programming, Programación multiobjetivo, Sang, Blood, Sangre, Volontariat, Volunteering, Voluntariado
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Dept. Computer Science and Artificial Intelligence, University of Granada, 18071, Spain
Howard Hughes Medical Institute, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1093, United States
ISSN:
0302-9743
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Molecular and cell biology
Accession Number:
edscal.19131253
Database:
PASCAL Archive

Further Information

The increased availability of biological databases containing representations of complex objects permits access to vast amounts of data. In spite of the recent renewed interest in knowledge-discovery techniques (or data mining), there is a dearth of data analysis methods intended to facilitate understanding of the represented objects and related systems by their most representative features and those relationship derived from these features (i.e., structural data). In this paper we propose a conceptual clustering methodology termed EMO-CC for Evolutionary Multi-Objective Conceptual Clustering that uses multi-objective and multi-modal optimization techniques based on Evolutionary Algorithms that uncover representative substructures from structural databases. Besides, EMO-CC provides annotations of the uncovered substructures, and based on them, applies an unsupervised classification approach to retrieve new members of previously discovered substructures. We apply EMO-CC to the Gene Ontology database to recover interesting substructures that describes problems from different points of view and use them to explain inmuno-inflammatory responses measured in terms of gene expression profiles derived from the analysis of longitudinal blood expression profiles of human volunteers treated with intravenous endotoxin compared to placebo.