Treffer: The exact lattice width of planar sets and minimal arithmetical thickness

Title:
The exact lattice width of planar sets and minimal arithmetical thickness
Authors:
Source:
Combinatorial image analysis (11th International Workshop, IWCIA 2006, Berlin, Germany, June 19-21, 2006)0IWCIA 2006. :25-33
Publisher Information:
Berlin; New York: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 23 ref 1
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
LLAIC1 -IUT Clermont-Ferrand, BP 86, 63172 Aubière, France
ISSN:
0302-9743
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19131692
Database:
PASCAL Archive

Weitere Informationen

We provide in this paper an algorithm for the exact computation of the lattice width of an integral polygon K with n vertices in O(nlogs) arithmetic operations where s is a bound on all integers defining vertices and edges. We also provide an incremental version of the algorithm whose update complexity is shown to be O(log n + logs). We apply this algorithm to construct the arithmetical line with minimal thickness, which contains a given set of integer points.