Result: The monogenic curvature scale-space

Title:
The monogenic curvature scale-space
Source:
Combinatorial image analysis (11th International Workshop, IWCIA 2006, Berlin, Germany, June 19-21, 2006)0IWCIA 2006. :320-332
Publisher Information:
Berlin; New York: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 22 ref 1
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Cognitive Systems Group Institute of Computer Science and Applied Mathematics Christian Albrechts University of Kiel, 24118 Kiel, Germany
ISSN:
0302-9743
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19131714
Database:
PASCAL Archive

Further Information

In this paper, we address the topic of monogenic curvature scale-space. Combining methods of tensor algebra, monogenic signal and quadrature filter, the monogenic curvature signal, as a novel model for intrinsically two-dimensional (i2D) structures, is derived in an algebraically extended framework. It is unified with a scale concept by employing damped spherical harmonics as basis functions. This results in a monogenic curvature scale-space. Local amplitude, phase and orientation, as independent local features, are extracted. In contrast to the Gaussian curvature scale-space, our approach has the advantage of simultaneous estimation of local phase and orientation. The main contribution is the rotationally invariant phase estimation in the scale-space, which delivers access to various phase-based applications in computer vision.