Treffer: Dynamic isoline extraction for visualization of streaming data

Title:
Dynamic isoline extraction for visualization of streaming data
Source:
Computer science (theory and applications)0CSR 2006. :415-426
Publisher Information:
Berlin: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 19 ref 1
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Systèmes d'information. Bases de données, Information systems. Data bases, Base donnée temporelle, Temporal databases, Base donnée, Database, Base dato, Complexité algorithme, Algorithm complexity, Complejidad algoritmo, Complexité temps, Time complexity, Complejidad tiempo, Courbe niveau, Contour line, Curva nivel, Extensibilité, Scalability, Estensibilidad, Flux donnée, Data flow, Flujo datos, Géométrie algorithmique, Computational geometry, Geometría computacional, Interrogation base donnée, Database query, Interrogación base datos, Localisation, Localization, Localización, Réseau capteur, Sensor array, Red sensores, Service web, Web service, Servicio web, Structure donnée arborescente, Tree data structures, Structure donnée, Data structure, Estructura datos, Système réparti, Distributed system, Sistema repartido, Temps réel, Real time, Tiempo real, Triangulation, Triangulación, Visualisation donnée, Data visualization, Transmission en continu, Streaming, Transmisión continua
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
University of Connecticut, Storrs, CT, United States
ISSN:
0302-9743
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19150268
Database:
PASCAL Archive

Weitere Informationen

Queries over streaming data offer the potential to provide timely information for modern database applications, such as sensor networks and web services. Isoline-based visualization of streaming data has the potential to be of great use in such applications. Dynamic (real-time) isoline extraction from the streaming data is needed in order to fully harvest that potential, allowing the users to see in real time the patterns and trends - both spatial and temporal - inherent in such data. This is the goal of this paper. Our approach to isoline extraction is based on data terrains, triangulated irregular networks (TINs) where the coordinates of the vertices corresponds to locations of data sources, and the height corresponds to their readings. We dynamically maintain such a data terrain for the streaming data. Furthermore, we dynamically maintain an isoline (contour) map over this dynamic data network. The user has the option of continuously viewing either the current shaded triangulation of the data terrain, or the current isoline map, or an overlay of both. For large networks, we assume that complete recomputation of either the data terrain or the isoline map at every epoch is impractical. If n is the number of data sources in the network, time complexity per epoch should be O(log n) to achieve real-time performance. To achieve this time complexity, our algorithms are based on efficient dynamic data structures that are continuously updated rather than recomputed. Specifically, we use a doubly-balanced interval tree, a new data structure where both the tree and the edge sets of each node are balanced. As far as we know, no one has applied TINs for data terrain visualization before this work. Our dynamic isoline computation algorithm is also new. Experimental results confirm both the efficiency and the scalability of our approach.