Treffer: Evolutionary multi-objective optimisation by diversity control
Research and Development Center for Intelligent Systems, King Mongkut's Institute of Technology North Bangkok, Bangkok 10800, Thailand
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
This paper presents an improved multi-objective diversity control oriented genetic algorithm (MODCGA-II). The performance comparison between the MODCGA-II, a non-dominated sorting genetic algorithm II (NSGA-II) and an improved strength Pareto evolutionary algorithm (SPEA-II) is carried out where different two- and three-objective benchmark problems with specific multi-objective characteristics are used. The results indicate that the two-objective MODCGA-II solutions are better than the solutions generated by the NSGA-II and SPEA-II in terms of the closeness to the true Pareto optimal solutions and the uniformity of solution distribution along the Pareto front. In contrast, the NSGA-II in overall produces the best solutions in three-objective problems. As a result, the limitation of the proposed algorithm is identified.