Result: Distance approximating trees : Complexity and algorithms

Title:
Distance approximating trees : Complexity and algorithms
Source:
Algorithms and complexity (6th Italian conference, CIAC 2006, Rome, Italy, May 29-31, 2006)0CIAC 2006. :260-271
Publisher Information:
Berlin: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 27 ref 1
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science, Kent State University, Kent, OH 44242, United States
ISSN:
0302-9743
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19150316
Database:
PASCAL Archive

Further Information

Let A > 1 and 6 > 0 be real numbers. A tree T = (V, E') is a distance (A, 6)-approximating tree of a graph G = (V, E) if dH(u, v) ≤ A dG(u, v) + δ and dG(u, v) ≤ Δ dH(u,v) + δ hold for every u,v ∈ V. The distance (A, 6)-approximating tree problem asks for a given graph G to decide whether G has a distance (A, 6)-approximating tree. In this paper, we consider unweighted graphs and show that the distance (A, 0)-approximating tree problem is NP-complete for any A ≥ 5 and the distance (1,1)-approximating tree problem is polynomial time solvable.