Result: Fast computation of database operations using content-addressable memories
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
Research efforts on conventional CPU architectures over the past decade have focused primarily on performance enhancement. In contrast, the NPU (Network Processing Unit) architectures have evolved significantly in terms of functionality. The memory hierarchy of a typical network router features a Content-Addressable Memory (CAM) which provides very fast constant-time lookups over large amounts of data and facilitates a wide range of novel high-speed networking solutions such as Packet Classification, Intrusion Detection and Pattern Matching. While these networking applications span an entirely different domain than the database applications, they share a common operation of searching for a particular data entry among huge amounts of data. In this paper, we investigate how CAM-based technology can help in addressing the existing memory hierarchy bottlenecks in database operations. We present several high-speed CAM-based solutions for computationally intensive database operations. In particular, we discuss an efficient linear-time complexity CAM-based sorting algorithm and apply it to develop a fast solution for complex join operations widely used in database applications.