Copyright 2007 INIST-CNRS CC BY 4.0 Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19151332
Database:
PASCAL Archive
Further Information
Geographic information systems (GIS) must support large georeferenced data sets. Due to the size of these data sets finding exact answers to spatial queries can be very time consuming. We present an incremental refining spatial join algorithm that can be used to report query result estimates while simultaneously provide incrementally refined confidence intervals for these estimates. Our approach allows for more interactive data exploration. While similar work has been done in relational databases, to the best of our knowledge this is the first work using this approach in GIS. We investigate different sampling methodologies and evaluate them through extensive experimental performance comparisons. Experiments on real and synthetic data show an order of magnitude response time improvement relative to the exact answer obtained when using the R-tree join.