Treffer: Tensor factorization by simultaneous estimation of mixing factors for robust face recognition and synthesis

Title:
Tensor factorization by simultaneous estimation of mixing factors for robust face recognition and synthesis
Source:
Multimedia content representation, classification and security (International Workshop, MRCS 2006, Istanbul, Turkey, September 11-13, 2006)0MRCS 2006. :143-150
Publisher Information:
Berlin: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 10 ref 1
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Systèmes d'information. Bases de données, Information systems. Data bases, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Analyse contenu, Content analysis, Análisis contenido, Classification, Clasificación, Contrainte égalité, Equality constraint, Constreñimiento igualdad, Eclairage, Lighting, Alumbrado, Faciès, Facies, Mimique, Facial expression, Mímica, Modèle multiple, Multimodel, Modelo múltiple, Multimédia, Multimedia, Mélangeage, Mixing, Mezclado, Méthode factorisation, Factorization method, Método factorización, Méthode moindre carré, Least squares method, Método cuadrado menor, Méthode tensorielle, Tensor method, Método tensorial, Optimisation, Optimization, Optimización, Posture, Postura, Reconnaissance forme, Pattern recognition, Reconocimiento patrón, Reconnaissance visage, Face recognition, Sécurité informatique, Computer security, Seguridad informatica, Traitement image, Image processing, Procesamiento imagen
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Carnegie Mellon University, Pittsburgh PA 15213, United States
ISSN:
0302-9743
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19151352
Database:
PASCAL Archive

Weitere Informationen

Facial images change appearance due to multiple factors such as poses, lighting variations, facial expressions, etc. Tensor approach, an extension of conventional matrix, is appropriate to analyze facial factors since we can construct multilinear models consisting of multiple factors using tensor framework. However, given a test image, tensor factorization, i.e., decomposition of mixing factors, is a difficult problem especially when the factor parameters are unknown or are not in the training set. In this paper, we propose a novel tensor factorization method to decompose the mixing factors of a test image. We set up a tensor factorization problem as a least squares problem with a quadratic equality constraint, and solve it using numerical optimization techniques. The novelty in our approach compared to previous work is that our tensor factorization method does not require any knowledge or assumption of test images. We have conducted several experiments to show the versatility of the method for both face recognition and face synthesis.