Treffer: Structural and syntactic techniques for recognition of ethiopic characters

Title:
Structural and syntactic techniques for recognition of ethiopic characters
Source:
Structural, syntactic, and statistical pattern recognition (joint IAPR international workshops, SSPR 2006 and SPR 2006, Hong Kong, China, August 17-19, 2006)0SSPR 2006. :118-126
Publisher Information:
Berlin: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 7 ref 1
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
School of Information Science, Computer and Electrical Engineering Halmstad University, 301 18 Halmstad, Sweden
ISSN:
0302-9743
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19151961
Database:
PASCAL Archive

Weitere Informationen

OCR technology of Latin scripts is well advanced in comparison to other scripts. However, the available results from Latin are not always sufficient to directly adopt them for other scripts such as the Ethiopic script. In this paper, we propose a novel approach that uses structural and syntactic techniques for recognition of Ethiopic characters. We reveal that primitive structures and their spatial relationships form a unique set of patterns for each character. The relationships of primitives are represented by a special tree structure, which is also used to generate a pattern. A knowledge base of the alphabet that stores possibly occurring patterns for each character is built. Recognition is then achieved by matching the generated pattern against each pattern in the knowledge base. Structural features are extracted using direction field tensor. Experimental results are reported, and the recognition system is insensitive to variations on font types, sizes and styles.