Treffer: Using learned conditional distributions as edit distance

Title:
Using learned conditional distributions as edit distance
Source:
Structural, syntactic, and statistical pattern recognition (joint IAPR international workshops, SSPR 2006 and SPR 2006, Hong Kong, China, August 17-19, 2006)0SSPR 2006. :403-411
Publisher Information:
Berlin: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 8 ref 1
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Intelligence artificielle, Artificial intelligence, Reconnaissance des formes. Traitement numérique des images. Géométrie algorithmique, Pattern recognition. Digital image processing. Computational geometry, Analyse statistique, Statistical analysis, Análisis estadístico, Analyse structurale, Structural analysis, Análisis estructural, Analyse syntaxique, Syntactic analysis, Análisis sintáxico, Appariement chaîne, String matching, Apprentissage probabilités, Probability learning, Aprendizaje probabilidades, Chaîne caractère, Character string, Cadena carácter, Coût fixe, Fixed cost, Costo fijo, Distance, Distancia, Entrée sortie, Input output, Entrada salida, Loi conditionnelle, Conditional distribution, Ley condicional, Loi marginale, Marginal distribution, Ley marginal, Loi probabilité, Probability distribution, Ley probabilidad, Machine état fini, Finite state machine, Máquina estado finito, Rapport signal bruit, Signal to noise ratio, Relación señal ruido, Reconnaissance caractère, Character recognition, Reconocimiento carácter, Reconnaissance forme, Pattern recognition, Reconocimiento patrón, Traitement image, Image processing, Procesamiento imagen
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Dep. de Lenguajes y Sistemas Informáticos, Universidad de Alicante, Spain
EURISE, Université de Saint-Etienne, France
ISSN:
0302-9743
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19151993
Database:
PASCAL Archive

Weitere Informationen

In order to achieve pattern recognition tasks, we aim at learning an unbiased stochastic edit distance, in the form of a finite-state transducer, from a corpus of (input,output) pairs of strings. Contrary to the state of the art methods, we learn a transducer independently on the marginal probability distribution of the input strings. Such an unbiased way to proceed requires to optimize the parameters of a conditional transducer instead of a joint one. This transducer can be very useful in pattern recognition particularly in the presence of noisy data. Two types of experiments are carried out in this article. The first one aims at showing that our algorithm is able to correctly assess simulated theoretical target distributions. The second one shows its practical interest in a handwritten character recognition task, in comparison with a standard edit distance using a priori fixed edit costs.