Treffer: Unsupervised image segmentation using a hierarchical clustering selection process

Title:
Unsupervised image segmentation using a hierarchical clustering selection process
Source:
Structural, syntactic, and statistical pattern recognition (joint IAPR international workshops, SSPR 2006 and SPR 2006, Hong Kong, China, August 17-19, 2006)0SSPR 2006. :799-807
Publisher Information:
Berlin: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 13 ref 1
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Dept. Lenguajes y Sistemas Informaticos, Jaume I Univerisity, Spain
ISSN:
0302-9743
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19152037
Database:
PASCAL Archive

Weitere Informationen

In this paper we present an unsupervised algorithm to select the most adequate grouping of regions in an image using a hierarchical clustering scheme. Then, we introduce an optimisation approach for the whole process. The grouping method presented is based on the maximisation of a measure that represents the perceptual decision. The whole strategy takes profit from a hierarchical clustering to find a maximum of the proposed criterion. The algorithm has been used to segment real images as well as multispectral images achieving very accurate results on this task.