Result: Testing the Markov property with high frequency data
Economics Department, Queen Mary, University of London, Mile End Road, E1 4NS, London, United Kingdom
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
This paper develops a framework to nonparametrically test whether discrete-valued irregularly spaced financial transactions data follow a Markov process. For that purpose, we consider a specific optional sampling in which a continuous-time Markov process is observed only when it crosses some discrete level. This framework is convenient for it accommodates the irregular spacing that characterizes transactions data. Under such an observation rule, the current price duration is independent of a previous price duration given the previous price realization. A simple nonparametric test then follows by examining whether this conditional independence property holds. Monte Carlo simulations suggest that the asymptotic test has huge size distortions, though a bootstrap-based variant entails reasonable size and power properties in finite samples. As for an empirical illustration, we investigate whether bid-ask spreads follow Markov processes using transactions data from the New York Stock Exchange. The motivation lies on the fact that asymmetric information models of market microstructures predict that the Markov property does not hold for the bid-ask spread. We robustly reject the Markov assumption for two out of the five stocks under scrutiny. Finally, it is reassuring that our results are consistent with two alternative measures of asymmetric information.