Treffer: Asymptotic and bootstrap inference for inequality and poverty measures

Title:
Asymptotic and bootstrap inference for inequality and poverty measures
Source:
Semiparametric methods in econometricsJournal of econometrics. 141(1):141-166
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 1 p
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Statistiques, Statistics, Lois de probabilités, Distribution theory, Inférence paramétrique, Parametric inference, Applications, Assurances, économie, finance, Insurance, economics, finance, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Probabilités et statistiques numériques, Numerical methods in probability and statistics, Analyse donnée, Data analysis, Análisis datos, Analyse numérique, Numerical analysis, Análisis numérico, Bootstrap, Distribution revenu, Income distribution, Distribución del ingreso, Distribution statistique, Statistical distribution, Distribución estadística, Donnée économique, Economic data, Dato económico, Econométrie, Econometrics, Econometría, Estimation statistique, Statistical estimation, Estimación estadística, Fonction répartition, Distribution function, Función distribución, Grand échantillon, Large sample, Méthode Monte Carlo, Monte Carlo method, Método Monte Carlo, Méthode jackknife, Jackknife method, Método jackknife, Méthode rééchantillonnage, Resampling method, Méthode statistique, Statistical method, Método estadístico, Méthode stochastique, Stochastic method, Método estocástico, Pauvreté, Poverty, Pobreza, Queue distribution, Distribution tail, Cola distribución, Théorie approximation, Approximation theory, 49K40, 60E05, 62E17, 62F40, 65C05, Estimation paramétrique, C00; C15; 132, Income distribution; Poverty; Bootstrap inference
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Economics. McGill University, Montreal, Que., H3A 2T7, Canada
GREQAM, Centre de la Vieille Charité, 2 rue de la Charité, 13002 Marseille, France
Eurequa, Université Paris I Panthéon-Sorbonne, Maison des Sciences Économiques, 106-112 bd de l'Hopital, 75647 Paris, France
ISSN:
0304-4076
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.19153138
Database:
PASCAL Archive

Weitere Informationen

A random sample drawn from a population would appear to offer an ideal opportunity to use the bootstrap in order to perform accurate inference, since the observations of the sample are IID. In this paper, Monte Carlo results suggest that bootstrapping a commonly used index of inequality leads to inference that is not accurate even in very large samples, although inference with poverty indices is satisfactory. We find that the major cause is the extreme sensitivity of many inequality indices to the exact nature of the upper tail of the income distribution. This leads us to study two non-standard bootstraps, the m out of n bootstrap, which is valid in some situations where the standard bootstrap fails, and a bootstrap in which the upper tail is modelled parametrically. Monte Carlo results suggest that accurate inference can be achieved with this last method in moderately large samples.