Result: Inversion methods in helioseismology and solar tomography

Title:
Inversion methods in helioseismology and solar tomography
Authors:
Source:
Computational AstrophysicsJournal of computational and applied mathematics. 109(1-2):1-39
Publisher Information:
Amsterdam: Elsevier, 1999.
Publication Year:
1999
Physical Description:
print, 78 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Terre, ocean, espace, Earth, ocean, space, Astronomie, Astronomy, Astronomie fondamentale et astrophysique. Instrumentation, techniques, et observations astronomiques, Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations, Techniques d'observation et de réduction des données. Simulation et modélisation par ordinateur, Observation and data reduction techniques. Computer modeling and simulation, Méthodes mathématiques et méthodes de simulation sur ordinateur, Mathematical procedures and computer techniques, Développement asymptotique, Asymptotic expansion, Desarrollo asintótico, Equation Poisson, Poisson equation, Equation linéarisée, Linearized equation, Ecuación linearizada, Fréquence propre, Eigenfrequency, Hélioséismologie, Helioseismology, Heliosismología, Loi conservation, Conservation laws, Multiplicateur Lagrange, Lagrange multiplier, Multiplicador Lagrange, Méthode moindre carré, Least square fit, Opérateur linéaire, Linear operator, Operador lineal, Oscillation, Oscillations, Principe variationnel, Variational principle, Principio variacional, Problème inverse, Inverse problems, Problème valeur limite, Boundary-value problems, Problème valeur propre, Eigenvalue problem, Problema valor propio, Régularisation, Regularization, Regularización, Astrophysique algorithmique, Computational astrophysics, Méthode Backus Gilbert, Backus Gilbert method, Régularization Tikhonov, Tikhonov regularization, Tomographie solaire, Solar tomography
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085, United States
ISSN:
0377-0427
Rights:
Copyright 1999 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Astronomy
Accession Number:
edscal.1979659
Database:
PASCAL Archive

Further Information

Basic methods by which the internal structure and dynamics of the Sum can be inferred from observed frequencies of solar oscillations and acoustic travel times are discussed. The methods for inverting the oscillation frequencies are based on a variational formulation of the adiabatic eigenvalue problem for a star. The inversion technique formulated in terms of linear integral constraints provides estimates of localized averages of properties of the solar structure, such as density and sound speed, helium abundance in the convection zone for a given equation of state, and, in addition, the estimates for the internal rotation rate. The method of inverting acoustic travel times employs a geometrical ray approximation and provides 3D images of solar convective cells, active regions and sunspots. The information about the global and local structures and flow velocities in the solar interior is important for understanding solar evolution and mechanisms of solar activity. The high-resolution helioseismology projects from space provide a tremendous amount of data, the interpretation of which is increasingly challenging and requires the development of efficient inversion methods and algorithms.