Treffer: Computational methods for nucleosynthesis and nuclear energy generation

Title:
Computational methods for nucleosynthesis and nuclear energy generation
Source:
Computational AstrophysicsJournal of computational and applied mathematics. 109(1-2):321-351
Publisher Information:
Amsterdam: Elsevier, 1999.
Publication Year:
1999
Physical Description:
print, 138 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Physique nucleaire, Nuclear physics, Structure nucléaire, Nuclear structure, Propriétés des noyaux, niveaux d'énergie nucléaire, Properties of nuclei, nuclear energy levels, Terre, ocean, espace, Earth, ocean, space, Astronomie, Astronomy, Astronomie fondamentale et astrophysique. Instrumentation, techniques, et observations astronomiques, Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations, Techniques d'observation et de réduction des données. Simulation et modélisation par ordinateur, Observation and data reduction techniques. Computer modeling and simulation, Méthodes mathématiques et méthodes de simulation sur ordinateur, Mathematical procedures and computer techniques, Accrétion, Accretion, Activité stellaire, Stellar activity, Astrophysique, Astrophysics, Big bang, Equation matricielle, Matrix equation, Ecuación matricial, Equation vitesse, Rate equation, Ecuación velocidad, Ignition thermonucléaire, Thermonuclear ignition, Loi Planck, Planck law, Méthode numérique, Numerical method, Método numérico, Nucléosynthèse, Nucleosynthesis, Physique nucléaire, Nuclear physics, Plasma astrophysique, Astrophysical plasma, Réaction fusion nucléaire, Thermonuclear reactions, Statistique Boltzmann, Boltzmann statistics, Equilibre astrophysique, Equilibrium in astrophysics, Equilibre statistique nucléaire, Nuclear statistical equilibrium, NSE, Statistique Maxwell Boltzmann, Maxwell Boltzmann statistics
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Joint Institute for Heavy Ion Research, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6374, United States
Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200, United States
Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6373, United States
Department für Physik und Astronomie, Universität Basel, 4056 Basel, Switzerland
ISSN:
0377-0427
Rights:
Copyright 1999 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Astronomy

Nuclear physics
Accession Number:
edscal.1979822
Database:
PASCAL Archive

Weitere Informationen

This review concentrates on the two principle methods used to evolve nuclear abundances within astrophysical simulations, evolution via rate equations and via equilibria. Because in general the rate equations in nucleosynthetic applications form an extraordinarily stiff system, implicit methods have proven mandatory, leading to the need to solve moderately sized matrix equations. Efforts to improve the performance of such rate equation methods are focused on efficient solution of these matrix equations, by making best use of the sparseness of these matrices. Recent work to produce hybrid schemes which use local equilibria to reduce the computational cost of the rate equations is also discussed. Such schemes offer significant improvements in the speed of reaction networks and are accurate under circumstances where calculations with complete equilibrium fail.