Treffer: 10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulators (SOMs)

Title:
10-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulators (SOMs)
Source:
2007 IEEE International Solid-State Circuits Conference (ISSCC)IEEE journal of solid-state circuits. 42(12):2913-2922
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2007.
Publication Year:
2007
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Dispositifs à images, Imaging devices, Circuits électriques, optiques et optoélectroniques, Electric, optical and optoelectronic circuits, Propriétés des circuits, Circuit properties, Circuits électroniques, Electronic circuits, Amplificateurs, Amplifiers, Convertisseurs de signal, Signal convertors, Circuits optiques et optoélectroniques, Optical and optoelectronic circuits, Optique intégrée. Fibres et guides d'onde optiques, Integrated optics. Optical fibers and wave guides, Amplificateur opérationnel, Operational amplifier, Amplificador operacional, Autoorganisation, Self organization, Autoorganización, Charge capacitive, Capacitive load, Carga capacitiva, Convertisseur NA, DA converter, Convertidor NA, Echelle gris, Gray scale, Escala gris, Excitateur, Driver, Excitador, Gain, Ganancia, Modulateur optique, Optical modulator, Modulador óptico, Modulateur spatial, Spatial modulator, Modulador espacial, Processeur 8 bits, 8 bit Processor, Procesador 8 bits, Résistance électrique, Resistor, Resistencia eléctrica(componente), Technologie MOS complémentaire, Complementary MOS technology, Tecnología MOS complementario, Temps réponse, Response time, Tiempo respuesta, Tension sortie, Output voltage, Voltage salida, Transmission donnée, Data transmission, Transmisión datos, Télévision haute résolution, High definition television, Televisión alta definición, 10-bit gray scale, Digital-to-analog converter (DAC), driver IC, high-definition TV (HDTV), spatial optical modulator (SOM)
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Division of Electrical and Computer Engineering, Hanyang University, Seoul 133-791, Korea, Republic of
Samsung Electro-Mechanics Ltd, Suwon 443-473, Korea, Republic of
ISSN:
0018-9200
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electronics
Accession Number:
edscal.19942577
Database:
PASCAL Archive

Weitere Informationen

A 10-bit driver IC for laser projection full high-definition TV (HDTV) applications using a spatial optical modulator (SOM) has been developed. For high-speed data transfer between the timing controller and driver IC, the driver IC adopts a mini-LVDS interface that operates up to 400 Mbps. To reduce the chip area, a digital-to-analog converter (DAC) structure including a 7-bit resistor-string DAC and a unity-gain buffer, which has a 3-bit linear DAC, is proposed. The area of the proposed DAC is 40% smaller than that of the typical 8-bit resistor-string DAC. The driver IC, which has 546 channels, is fabricated using a 0.35-μm CMOS process, and its area is 21 700 μm x 3 000 μm. The measured INL and DNL of the output voltages are less than 0.13 LSB, and the settling time is 1.93 μs with 40 pF capacitive loads. The output voltage deviation of the driver IC is achieved as 1.3 mV by compensating the nonuniformity among output channels.