Service restrictions from February 12-22, 2026—more information on the University Library website

Result: Ranked Centroid Projection : A Data Visualization Approach With Self-Organizing Maps

Title:
Ranked Centroid Projection : A Data Visualization Approach With Self-Organizing Maps
Authors:
Source:
IEEE transactions on neural networks. 19(2):245-259
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2008.
Publication Year:
2008
Physical Description:
print, 42 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Computer science, Informatique, Psychology, psychopathology, psychiatry, Psychologie, psychopathologie, psychiatrie, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Systèmes d'information. Bases de données, Information systems. Data bases, Intelligence artificielle, Artificial intelligence, Reconnaissance et synthèse de la parole et du son. Linguistique, Speech and sound recognition and synthesis. Linguistics, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Analyse amas, Cluster analysis, Analisis cluster, Analyse documentaire, Document analysis, Análisis documental, Analyse donnée, Data analysis, Análisis datos, Autoorganisation, Self organization, Autoorganización, Base de données multidimensionnelle, Multidimensional database, Base dato multidimensional, Centre gravité, Center of mass, Centro gravitacional, Classification, Clasificación, Donnée textuelle, Textual data, Dato textual, Espace vectoriel, Vector space, Espacio vectorial, Fouille donnée, Data mining, Busca dato, Méthode projection, Projection method, Método proyección, Niveau détail, Detail level, Nivel detalle, Réseau neuronal, Neural network, Red neuronal, Visualisation donnée, Data visualization, -Data visualization, document clustering, self-organizing map (SOM)
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
the School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, United States
ISSN:
1045-9227
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.20081175
Database:
PASCAL Archive

Further Information

-The self-organizing map (SOM) is an efficient tool for visualizing high-dimensional data. In this paper, the clustering and visualization capabilities of the SOM, especially in the analysis of textual data, i.e., document collections, are reviewed and further developed. A novel clustering and visualization approach based on the SOM is proposed for the task of text mining. The proposed approach first transforms the document space into a multidimensional vector space by means of document encoding. Afterwards, a growing hierarchical SOM (GHSOM) is trained and used as a baseline structure to automatically produce maps with various levels of detail. Following the GHSOM training, the new projection method, namely the ranked centroid projection (RCP), is applied to project the input vectors to a hierarchy of 2-D output maps. The RCP is used as a data analysis tool as well as a direct interface to the data. In a set of simulations, the proposed approach is applied to an illustrative data set and two real-world scientific document collections to demonstrate its applicability.