Result: Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar : a sensitivity analysis

Title:
Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar : a sensitivity analysis
Source:
Applied physics. B, Lasers and optics (Print). 90(3-4):593-608
Publisher Information:
Berlin: Springer, 2008.
Publication Year:
2008
Physical Description:
print, 43 ref
Original Material:
INIST-CNRS
Subject Terms:
Optics, Optique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Generalites, General, Instruments, appareillage, composants et techniques communs à plusieurs branches de la physique et de l'astronomie, Instruments, apparatus, components and techniques common to several branches of physics and astronomy, Instruments, appareillage et composants en technique et recherche spatiale (satellite, engin spatial, etc.), Spaceborne and space research instruments, apparatus and components (satellites, space vehicles, etc.), Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Optique, Optics, Optique atmosphérique, Atmospheric optics, Télédétection; lidar et systèmes adaptatifs, Remote sensing; lidar and adaptive systems, Sciences appliquees, Applied sciences, Pollution, Pollution globale de l'environnement, Global environmental pollution, Terre, ocean, espace, Earth, ocean, space, Astronomie, Astronomy, Astronomie fondamentale et astrophysique. Instrumentation, techniques, et observations astronomiques, Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations, Techniques d'observation et de réduction des données. Simulation et modélisation par ordinateur, Observation and data reduction techniques. Computer modeling and simulation, Optique adaptative et segmentée, Adaptive and segmented optics, Absorption différentielle, Differential absorption, Absorción diferencial, Analyse sensibilité, Sensitivity analysis, Carbone dioxyde, Carbon dioxide, Détecteur de gaz, Gas detector, Detector de gas, Erreur aléatoire, Random error, Error aleatorio, Erreur mesure, Measurement errors, Erreur systématique, Bias, Error sistemático, Homme, Man, Hydrocarbure, Hydrocarbons, Instrument spatial, Spaceborne instruments, Lidar, Mesure concentration, Concentration measurement, Medición concentración, Méthane, Methane, Optique atmosphérique, Atmospheric optics, Pureté spectrale, Spectral purity, Pureza espectral, Speckle, Speckles, Stabilité fréquence, Frequency stability, Télescope, Telescopes, Télédétection, Remote sensing, 0707D, 4268W, 9575Q, Azote protoxyde, C O, CO2
Time:
0787, 0788
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft-und Raumfahrt (DLR) e.V, 82234 Oberpfaffenhofen, Germany
National Institute for Space Research (SRON), Utrecht, Netherlands
ISSN:
0946-2171
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Astronomy

Metrology

Physics: optics

Pollution
Accession Number:
edscal.20136261
Database:
PASCAL Archive

Further Information

CO2, CH4, and N2O are recognised as the most important greenhouse gases, the concentrations of which increase rapidly through human activities. Space-borne integrated path differential absorption lidar allows global observations at day and night over land and water surfaces in all climates. In this study we investigate potential sources of measurement errors and compare them with the scientific requirements. Our simulations reveal that moderate-size instruments in terms of telescope aperture (0.5-1.5 m) and laser average power (0.4-4 W) potentially have a low random error of the greenhouse gas column which is 0.2% for CO2 and 0.4% for CH4 for soundings at 1.6 μm, 0.4% for CO2 at 2.1 μm, 0.6% for CH4 at 2.3 μm, and 0.3% for N2O at 3.9 μm. Coherent detection instruments are generally limited by speckle noise, while direct detection instruments suffer from high detector noise using current technology. The wavelength selection in the vicinity of the absorption line is critical as it controls the height region of highest sensitivity, the temperature cross-sensitivity, and the demands on frequency stability. For CO2, an error budget of 0.08% is derived from our analysis of the sources of systematic errors. Among them, the frequency stability of ± 0.3 MHz for the laser transmitter and spectral purity of 99.9% in conjunction with a narrow-band spectral filter of 1 GHz (FWHM) are identified to be challenging instrument requirements for a direct detection CO2 system operating at 1.6 μm.