Result: OPTIMAL INAPPROXIMABILITY RESULTS FOR MAX-CUT AND OTHER 2-VARIABLE CSPs?

Title:
OPTIMAL INAPPROXIMABILITY RESULTS FOR MAX-CUT AND OTHER 2-VARIABLE CSPs?
Source:
SIAM journal on computing (Print). 37(1):319-357
Publisher Information:
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2008.
Publication Year:
2008
Physical Description:
print, 57 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Divers, Miscellaneous, Algorithme approximation, Approximation algorithm, Algoritmo aproximación, Algorithme optimal, Optimal algorithm, Algoritmo óptimo, Approximation, Aproximación, Calcul automatique, Computing, Cálculo automático, Contrainte, Constraint, Coacción, Informatique, Computer science, Informática, Méthode optimisation, Optimization method, Método optimización, Nombre entier, Integer, Entero, Optimisation combinatoire, Combinatorial optimization, Optimización combinatoria, Ordinateur, Computer, Computadora, Preuve, Proof, Prueba, Programmation en nombres entiers, Integer programming, Programación entera, Satisfaction contrainte, Constraint satisfaction, Satisfaccion restricción, 49XX, 65Kxx, 68W25, 68Wxx, 68XX, CSP, Problème satisfaction contrainte, Programmation combinatoire, 68Q17, MAX-CUT, Unique Games, constraint satisfaction, hardness of approximation
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
College of Computing, Georgia Tech, Atlanta, GA 30332, United States
Faculty of Mathematics and Computer Science, Weizmann Institute of Science, 44453 Kfar Saba, Israel
Department of Statistics, University of California at Berkeley, Berkeley, CA 94720, United States
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States
ISSN:
0097-5397
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.20136362
Database:
PASCAL Archive

Further Information

In this paper we show a reduction from the Unique Games problem to the problem of approximating MAX-CUT to within a factor of αGw + ∈ for all ∈ > 0; here αGw ≈.878567 denotes the approximation ratio achieved by the algorithm of Goemans and Williamson in [J. Assoc. Comput. Mach., 42 (1995), pp. 1115-1145]. This implies that if the Unique Games Conjecture of Khot in [Proceedings of the 34th Annual ACM Symposium on Theory of Computing, 2002, pp. 767-775] holds, then the Goemans-Williamson approximation algorithm is optimal. Our result indicates that the geometric nature of the Goemans-Williamson algorithm might be intrinsic to the MAX-CUT problem. Our reduction relies on a theorem we call Majority Is Stablest. This was introduced as a conjecture in the original version of this paper, and was subsequently confirmed in [E. Mossel, R. O'Donnell, and K. Oleszkiewicz, Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, 2005, pp. 21-30]. A stronger version of this conjecture called Plurality Is Stablest is still open, although [E. Mossel, R. O'Donnell, and K. Oleszkiewicz, Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, 2005, pp. 21-30] contains a proof of an asymptotic version of it. Our techniques extend to several other two-variable constraint satisfaction problems. In particular, subject to the Unique Games Conjecture, we show tight or nearly tight hardness results for MAX-2SAT, MAX-q-CUT, and MAX-2LIN(q). For MAX-2SAT we show approximation hardness up to a factor of roughly.943. This nearly matches the.940 approximation algorithm of Lewin, Livnat, and Zwick in [Proceedings of the 9th Annual Conference on Integer Programming and Combinatorial Optimization, Springer-Verlag, Berlin, 2002, pp. 67-82]. Furthermore, we show that our.943... factor is actually tight for a slightly restricted version of MAX-2SAT. For MAX-q-CUT we show a hardness factor which asymptotically (for large q) matches the approximation factor achieved by Frieze and Jerrum [Improved approximation algorithms for MAX k-CUT and MAX BISECTION, in Integer Programming and Combinatorial Optimization, Springer-Verlag, Berlin, pp. 1-13], namely 1 - 1/q + 2(ln q)/q2. For MAX-2LIN(q) we show hardness of distinguishing between instances which are (1 - e)-satisfiable and those which are not even, roughly, (q-∈/2)-satisfiable. These parameters almost match those achieved by the recent algorithm of Charikar, Makarychev, and Makarychev [Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 2006, pp. 205-214]. The hardness result holds even for instances in which all equations are of the form xi - xj = c. At a more qualitative level, this result also implies that 1 - ∈ vs. e hardness for MAX-2LIN(q) is equivalent to the Unique Games Conjecture.