Result: Signal and image approximation with level-set constraints
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Further Information
We present a novel variational approach to signal and image approximation using filter statistics (histograms) as constraints. Given a set of linear filters, we study the problem to determine the closest point to given data while constraining the level-sets of the filter outputs. This criterion and the constraints are formulated as a bilevel optimization problem. We develop an algorithm by representing the lower-level problem through complementarity constraints and by applying an interior-penalty relaxation method. Based on a decomposition of the penalty term into the difference of two convex functions, the resulting algorithm approximates the data by solving a sequence of convex programs. Our approach allows to model and to study the generation of image structure through the interaction of two convex processes for spatial approximation and for preserving filter statistics, respectively.