Treffer: Sensitivity of between-study heterogeneity in meta-analysis : proposed metrics and empirical evaluation. Commentary
Institute for Clinical Research and Health Policy Studies, Tufts-New England Medical Center, Tufts University School of Medicine, Boston, MA 02111, United States
Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina 45110, Greece
MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 0SR, United Kingdom
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
Background Several approaches are available for evaluating heterogeneity in meta-analysis. Sensitivity analyses are often used, but these are often implemented in various non-standardized ways. Methods We developed and implemented sequential and combinatorial algorithms that evaluate the change in between-study heterogeneity as one or more studies are excluded from the calculations. The algorithms exclude studies aiming to achieve either the maximum or the minimum final I2 below a desired pre-set threshold. We applied these algorithms in databases of meta-analyses of binary outcome and ≥4 studies from Cochrane Database of Systematic Reviews (Issue 4, 2005, n=1011) and meta-analyses of genetic associations (n=50). Two I2 thresholds were used (50% and 25%). Results Both algorithms have succeeded in achieving the pre-specified final I2 thresholds. Differences in the number of excluded studies varied from 0% to 6% depending on the database and the heterogeneity threshold, while it was common to exclude different specific studies. Among meta-analyses with initial I2 > 50%, in the large majority [19 (90.5%) and 208 (85.9%) in genetic and Cochrane meta-analyses, respectively] exclusion of one or two studies sufficed to decrease I2 < 50%. Similarly, among meta-analyses with initial I2 > 25%, in most cases [16 (57.1%) and 382 (81.3%), respectively) exclusion of one or two studies sufficed to decrease heterogeneity even <25%. The number of excluded studies correlated modestly with initial estimated I2 (correlation coefficients 0.52-0.68 depending on algorithm used). Conclusions The proposed algorithms can be routinely applied in meta-analyses as standardized sensitivity analyses for heterogeneity. Caution is needed evaluating post hoc which specific studies are responsible for the heterogeneity.