Treffer: New results for finding common neighborhoods in massive graphs in the data stream model

Title:
New results for finding common neighborhoods in massive graphs in the data stream model
Source:
Theoretical computer science. 407(1-3):302-309
Publisher Information:
Amsterdam: Elsevier, 2008.
Publication Year:
2008
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
University of Palermo, Dipartimento di Matematica ed Applicazioni, Via Archirafi 34, 90123 Palermo, Italy
Computer and Automation Research Institute of the Hungarian Academy of Sciences (MTA SZTAKI), P.O. Box 63, Budapest, 1518, Hungary
Department of Algebra, Budapest University of Technology and Economics, P.O. Box 91, Budapest, 1521, Hungary
ISSN:
0304-3975
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.20797088
Database:
PASCAL Archive

Weitere Informationen

We consider the problem of finding pairs of vertices that share large common neighborhoods in massive graphs. We give lower bounds for randomized, two-sided error algorithms that solve this problem in the data-stream model of computation. Our results correct and improve those of Buchsbaum, Giancarlo, and Westbrook [On finding common neighborhoods in massive graphs, Theoretical Computer Science, 299 (1-3) 707-718 (2004)].