Treffer: On a spatial generalization of the Kolosov-Muskhelishvili formulae

Title:
On a spatial generalization of the Kolosov-Muskhelishvili formulae
Authors:
Source:
Mathematical methods in the applied sciences. 32(2):223-240
Publisher Information:
Chichester: Wiley, 2009.
Publication Year:
2009
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Institute of Mathematics and Physics, Bauhaus-University, Weimar, Germany
ISSN:
0170-4214
Rights:
Copyright 2009 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.20947526
Database:
PASCAL Archive

Weitere Informationen

The main goal of this paper is to construct a spatial analog to the Kolosov-Muskhelishvili formulae using the framework of the hypercomplex function theory. We prove a generalization of Goursat's representation theorem for solutions of the biharmonic equation in three dimensions. On the basis of this result, we construct explicitly hypercomplex displacement and stress formulae in terms of two monogenic functions.