Treffer: (l, s) -extension of linear codes

Title:
(l, s) -extension of linear codes
Authors:
Source:
International Conference Combinatorics 2006Discrete mathematics. 309(2):412-417
Publisher Information:
Kidlington: Elsevier, 2009.
Publication Year:
2009
Physical Description:
print, 21 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Angewandte Informatik, Universität Bayreuth, 95440 Bayreuth, Germany
ISSN:
0012-365X
Rights:
Copyright 2009 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.21018476
Database:
PASCAL Archive

Weitere Informationen

We construct new linear codes with high minimum distance d. In at least 12 cases these codes improve the minimum distance of the previously known best linear codes for fixed parameters n, k. Among these new codes there is an optimal ternary [88, 8, 54]3 code. We develop an algorithm, which starts with already good codes C, i.e. codes with high minimum distance d for given length n and dimension k over the field GF(q). The algorithm is based on the newly defined (l, s)-extension. This is a generalization of the well-known method of adding a parity bit in the case of a binary linear code of odd minimum weight. (l, s)-extension tries to extend the generator matrix of C by adding l columns with the property that at least s of the l letters added to each of the codewords of minimum weight in C are different from 0. If one finds such columns the minimum distance of the extended code is d + s provided that the second smallest weight in C was at least d + s. The question whether such columns exist can be settled using a Diophantine system of equations.