Treffer: A Stochastic Model for a Pseudo Affine Projection Algorithm
Title:
A Stochastic Model for a Pseudo Affine Projection Algorithm
Source:
IEEE transactions on signal processing. 57(1):107-118
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2009.
Publication Year:
2009
Physical Description:
print, 13 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie du signal et des communications, Signal and communications theory, Signal, bruit, Signal, noise, Détection, estimation, filtrage, égalisation, prédiction, Detection, estimation, filtering, equalization, prediction, Traitement du signal, Signal processing, Divers, Miscellaneous, Algorithme, Algorithm, Algoritmo, Apprentissage, Learning, Aprendizaje, Approche déterministe, Deterministic approach, Enfoque determinista, Erreur quadratique moyenne, Mean square error, Error medio cuadrático, Filtre adaptatif, Adaptive filter, Filtro adaptable, Mise à jour, Updating, Actualización, Modèle stochastique, Stochastic model, Modelo estocástico, Méthode récursive, Recursive method, Método recursivo, Méthode statistique, Statistical method, Método estadístico, Régime permanent, Steady state, Régimen permanente, Régime transitoire, Unsteady state, Régimen transitorio, Simulation, Simulación, Taux convergence, Convergence rate, Relación convergencia, Traitement signal, Signal processing, Procesamiento señal, Transformation affine, Affine transformation, Transformación afín, Adaptive filters, affine projection, analysis, pseudo affine projection, stochastic algorithms
Document Type:
Fachzeitschrift
Article
File Description:
text
Language:
English
Author Affiliations:
Catholic University of Pelotas, Pelotas, RS, Brazil
Department of Electrical Engineering, Federal University of Santa Catarina, Florian6polis, SC, Brazil
Department of Electrical Engineering and Computer Science, University of California, Irvine, Newport Beach, CA 92660, United States
Department of Electrical Engineering, Federal University of Santa Catarina, Florian6polis, SC, Brazil
Department of Electrical Engineering and Computer Science, University of California, Irvine, Newport Beach, CA 92660, United States
ISSN:
1053-587X
Rights:
Copyright 2009 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.21020785
Database:
PASCAL Archive
Weitere Informationen
-This paper presents a statistical analysis of a Pseudo Affine Projection (PAP) algorithm, obtained from the Affine Projection algorithm (AP) for a step size a < 1 and a scalar error signal in the weight update. Deterministic recursive equations are derived for the mean weight and for the mean square error (MSE) for a large number of adaptive taps N compared to the order P of the algorithm. Simulations are presented which show good to excellent agreement with the theory in the transient and steady states. The PAP learning behavior is of special interest in applications where tradeoffs are necessary between convergence speed and steady-state misadjustment.