Result: (Zn, Mg)O/ZnO-based heterostructures grown by molecular beam epitaxy on sapphire : Polar vs. non-polar
Physics Department, University of Nice Sophia Antipolis, Parc Valrose, 06103 Nice, France
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Metals. Metallurgy
Physics and materials science
Physics of condensed state: electronic structure, electrical, magnetic and optical properties
Further Information
Zinc oxide (ZnO) has recently attracted considerable attention because of its unique physical properties and its potential applications in the blue and UV spectral range. Up to now, ZnO-based heterostructures have mostly been grown in a c-orientation. The growth of non-polar layers along the a-direction [1120] has been proposed to avoid any built-in electric fields in the c-direction. Polar and non-polar quantum wells (QWs) embedded in (Zn, Mg)O barriers were grown on an optimized buffer. We compare the photoluminescence (PL) emission of a- and c-oriented QWs. From this comparison, we demonstrate that the QWs exhibit confinement but no indication of quantum confined Stark effect, contrary to what is observed in c-oriented structures. In the non-polar orientation, it is shown that the thermal quenching is not related to the thermal escape of excitons from the ZnO area, since the calculated activation energies are much lower.