Result: Maximal Sidon sets and matroids

Title:
Maximal Sidon sets and matroids
Source:
Discrete mathematics. 309(13):4489-4494
Publisher Information:
Kidlington: Elsevier, 2009.
Publication Year:
2009
Physical Description:
print, 7 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C6, 1749-016 Lisboa, Portugal
Department of Mathematics, Lehman College (CUNY), Bronx, NY 10468, United States
ISSN:
0012-365X
Rights:
Copyright 2009 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.21543974
Database:
PASCAL Archive

Further Information

A subset X of an abelian group Γ, written additively, is a Sidon set of order h if whenever {(ai, mi): i ∈ I} and ((bj, nj): j ∈ J} are multisets of size h with elements in X and Σi∈I m¡a¡ = Σj∈J njbj, then {(ai, mi): i ∈ I} = {(bj, nj): j ∈ J}. The set X is ageneralized Sidon set of order (h, k) if whenever two such multisets have the same sum, then their multiset intersection has size at least k. It is proved that if X is a generalized Sidon set of order (2h ― 1, h ― 1), then the maximal Sidon sets of order h contained in X have the same cardinality. Moreover, X is a matroid where the independent subsets of X are the Sidon sets of order h.