Result: Suborbits of subspaces of type (m, k) under finite singular general linear groups
Title:
Suborbits of subspaces of type (m, k) under finite singular general linear groups
Authors:
Source:
Linear algebra and its applications. 431(8):1360-1366
Publisher Information:
Amsterdam: Elsevier, 2009.
Publication Year:
2009
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Problèmes combinatoires classiques, Classical combinatorial problems, Combinatoire algébrique, Algebraic combinatorics, Algèbre, Algebra, Corps et polynômes, Field theory and polynomials, Algèbre linéaire et multilinéaire, matrices, Linear and multilinear algebra, matrix theory, Combinatoire algébrique, Algebraic combinatorics, Corps fini, Finite field, Campo finito, Espace vectoriel, Vector space, Espacio vectorial, Groupe fini, Finite group, Grupo finito, Groupe linéaire, Linear group, Grupo lineal, Schéma association, Association scheme, Esquema asociación, Singularité, Singularity, Singularidad, 05B25, 05E30, Orbital, Singular general linear group, Suborbit
Document Type:
Academic journal
Article
File Description:
text
Language:
English
Author Affiliations:
Sch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing 100875, China
Math. and Inf. College. Langfang Teachers' College, Langfang 065000, China
Department of Math., Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
Math. and Inf. College. Langfang Teachers' College, Langfang 065000, China
Department of Math., Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
ISSN:
0024-3795
Rights:
Copyright 2009 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.21799999
Database:
PASCAL Archive
Further Information
Suppose Fn+1q denotes the (n + l)-dimensional vector space over a finite field Fq and GLn+l,n(Fq) denotes the corresponding singular general linear group. All the subspaces of type (m, k) form an orbit under GLn+l,n(Fq), denoted by M(m,k; n + l, n). Let Λ be the set of all the orbitals of (GLn+l,n(Fq), M(m,k; n + l, n)). Then (M(m, k; n + l, n), Λ) is a symmetric association scheme. In this paper, we determine all the orbitals and the rank of (GLn+l, n(Fq), M(m, k: n + l, n)), calculate the length of each suborbit. Finally, we compute all the intersection numbers of the symmetric association scheme (M (m, k; n + l, n), Λ), where k = 1 or k=l-1.