Result: Suborbits of subspaces of type (m, k) under finite singular general linear groups

Title:
Suborbits of subspaces of type (m, k) under finite singular general linear groups
Source:
Linear algebra and its applications. 431(8):1360-1366
Publisher Information:
Amsterdam: Elsevier, 2009.
Publication Year:
2009
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Sch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing 100875, China
Math. and Inf. College. Langfang Teachers' College, Langfang 065000, China
Department of Math., Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
ISSN:
0024-3795
Rights:
Copyright 2009 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.21799999
Database:
PASCAL Archive

Further Information

Suppose Fn+1q denotes the (n + l)-dimensional vector space over a finite field Fq and GLn+l,n(Fq) denotes the corresponding singular general linear group. All the subspaces of type (m, k) form an orbit under GLn+l,n(Fq), denoted by M(m,k; n + l, n). Let Λ be the set of all the orbitals of (GLn+l,n(Fq), M(m,k; n + l, n)). Then (M(m, k; n + l, n), Λ) is a symmetric association scheme. In this paper, we determine all the orbitals and the rank of (GLn+l, n(Fq), M(m, k: n + l, n)), calculate the length of each suborbit. Finally, we compute all the intersection numbers of the symmetric association scheme (M (m, k; n + l, n), Λ), where k = 1 or k=l-1.