Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Partial Similarity of Objects, or How to Compare a Centaur to a Horse

Title:
Partial Similarity of Objects, or How to Compare a Centaur to a Horse
Source:
Scale Space and Variational Methods in Computer VisionInternational journal of computer vision. 84(2):163-183
Publisher Information:
Heidelberg: Springer, 2009.
Publication Year:
2009
Physical Description:
print, 1 p.3/4
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science, Technion―Israel Institute of Technology, Haifa 32000, Israel
ISSN:
0920-5691
Rights:
Copyright 2009 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.21804591
Database:
PASCAL Archive

Weitere Informationen

Similarity is one of the most important abstract concepts in human perception of the world. In computer vision, numerous applications deal with comparing objects observed in a scene with some a priori known patterns. Often, it happens that while two objects are not similar, they have large similar parts, that is, they are partially similar. Here, we present a novel approach to quantify partial similarity using the notion of Pareto optimality. We exemplify our approach on the problems of recognizing non-rigid geometric objects, images, and analyzing text sequences.