Treffer: Generalized neuron: Feedforward and recurrent architectures
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Telecommunications and information theory
Weitere Informationen
Feedforward neural networks such as multilayer perceptrons (MLP) and recurrent neural networks are widely used for pattern classification, nonlinear function approximation, density estimation and time series prediction. A large number of neurons are usually required to perform these tasks accurately, which makes the MLPs less attractive for computational implementations on resource constrained hardware platforms. This paper highlights the benefits of feedforward and recurrent forms of a compact neural architecture called generalized neuron (GN). This paper demonstrates that GN and recurrent GN (RGN) can perform good classification, nonlinear function approximation, density estimation and chaotic time series prediction. Due to two aggregation functions and two activation functions, GN exhibits resilience to the nonlinearities of complex problems. Particle swarm optimization (PSO) is proposed as the training algorithm for GN and RGN. Due to a small number of trainable parameters, GN and RGN require less memory and computational resources. Thus, these structures are attractive choices for fast implementations on resource constrained hardware platforms.