Result: Cross-situational learning of object-word mapping using Neural Modeling Fields

Title:
Cross-situational learning of object-word mapping using Neural Modeling Fields
Source:
The Century of Brain Computation - Neural Network Alliances with Cognitive Computing and Intelligent Machine EmbodimentsNeural networks. 22(5-6):579-585
Publisher Information:
Kidlington: Elsevier, 2009.
Publication Year:
2009
Physical Description:
print, 3/4 p
Original Material:
INIST-CNRS
Subject Terms:
Cognition, Electronics, Electronique, Computer science, Informatique, Neurology, Neurologie, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Intelligence artificielle, Artificial intelligence, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Sciences biologiques et medicales, Biological and medical sciences, Sciences biologiques fondamentales et appliquees. Psychologie, Fundamental and applied biological sciences. Psychology, Psychologie. Psychophysiologie, Psychology. Psychophysiology, Psychologie du développement, Developmental psychology, Développement de l'enfant, Child development, Enfant, Child, Sciences medicales, Medical sciences, Psychopathologie. Psychiatrie, Psychopathology. Psychiatry, Etude clinique de l'enfant, Child clinical studies, Troubles du développement, Developmental disorders, Troubles de l'apprentissage, Learning disorders, Psychologie. Psychanalyse. Psychiatrie, Psychology. Psychoanalysis. Psychiatry, PSYCHOPATHOLOGIE. PSYCHIATRIE, Homme, Human, Hombre, Animation par ordinateur, Computer animation, Animación por computador, Apprentissage, Learning, Aprendizaje, Approche déterministe, Deterministic approach, Enfoque determinista, Association verbale, Verbal association, Asociación verbal, Catégorisation, Categorization, Categorización, Classification signal, Signal classification, Dialogue homme machine, Man machine dialogue, Diálogo hombre máquina, Développement cognitif, Cognitive development, Desarrolo cognitivo, Enfant, Child, Niño, Interface utilisateur, User interface, Interfase usuario, Linguistique mathématique, Computational linguistics, Linguística matemática, Mappage, Mapping, Carta de datos, Modélisation, Modeling, Modelización, Mot, Word, Palabra, Performance algorithme, Algorithm performance, Resultado algoritmo, Procédé discontinu, Batch process, Procedimiento discontínuo, Production par lot, Batch production, Producción por lote, Protocole transmission, Transmission protocol, Protocolo transmisión, Robot, Robotique, Robotics, Robótica, Réseau neuronal, Neural network, Red neuronal, Scénario, Script, Argumento, Trouble de l'apprentissage, Learning disability, Trastorno aprendizaje, Psychologie du développement, Clustering algorithms, Cross-situational learning, Language acquisition, Neural Modeling Fields
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Instituto de Fisica de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil
Adaptive Behaviour & Cognition Research Group, University of Plymouth, Plymouth PL4 8AA, United Kingdom
Air Force Research Laboratory, 80 Scott Drive, Hanscom Air Force Base, MA 01731, United States
Harvard University, 33 Oxford Street, Rm 336, Cambridge MA 02138, United States
ISSN:
0893-6080
Rights:
Copyright 2009 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Psychology. Ethology

Psychopathology. Psychiatry. Clinical psychology

FRANCIS
Accession Number:
edscal.22014814
Database:
PASCAL Archive

Further Information

The issue of how children learn the meaning of words is fundamental to developmental psychology. The recent attempts to develop or evolve efficient communication protocols among interacting robots or virtual agents have brought that issue to a central place in more applied research fields, such as computational linguistics and neural networks, as well. An attractive approach to learning an object-word mapping is the so-called cross-situational learning. This learning scenario is based on the intuitive notion that a learner can determine the meaning of a word by finding something in common across all observed uses of that word. Here we show how the deterministic Neural Modeling Fields (NMF) categorization mechanism can be used by the learner as an efficient algorithm to infer the correct object-word mapping. To achieve that we first reduce the original on-line learning problem to a batch learning problem where the inputs to the NMF mechanism are all possible object-word associations that could be inferred from the cross-situational learning scenario. Since many of those associations are incorrect, they are considered as clutter or noise and discarded automatically by a clutter detector model included in our NMF implementation. With these two key ingredients - batch learning and clutter detection - the NMF mechanism was capable to infer perfectly the correct object-word mapping.