Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Inference for two-stage adaptive treatment strategies using mixture distributions

Title:
Inference for two-stage adaptive treatment strategies using mixture distributions
Authors:
Source:
Applied statistics. 59(1):1-18
Publisher Information:
Oxford: Wiley-Blackwell, 2010.
Publication Year:
2010
Physical Description:
print, 1/2 p
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Théorie des probabilités et processus stochastiques, Probability theory and stochastic processes, Lois de probabilités, Distribution theory, Statistiques, Statistics, Inférence paramétrique, Parametric inference, Inférence non paramétrique, Nonparametric inference, Applications, Sciences médicales, Medical sciences, Application, Aplicación, Biométrie, Biometrics, Biometría, Covariable, Covariate, Donnée censurée, Censored data, Essai clinique, Clinical trial, Ensayo clínico, Estimation Bayes, Bayes estimation, Estimación Bayes, Estimation adaptative, Adaptive estimation, Estimación adaptativa, Estimation sans biais, Unbiased estimation, Estimación insesgada, Fonction répartition, Distribution function, Función distribución, Fonction survie, Survival function, Función sobrevivencia, Implémentation, Implementation, Implementación, Loi Weibull, Weibull distribution, Ley Weibull, Loi a priori, Prior distribution, Ley a priori, Loi exponentielle, Exponential distribution, Ley exponencial, Loi normale, Gaussian distribution, Curva Gauss, Maximum vraisemblance, Maximum likelihood, Maxima verosimilitud, Mélange loi probabilité, Mixed distribution, Mezcla ley probabilidad, Méthode semiparamétrique, Semiparametric method, Método semiparamétrico, Méthode statistique, Statistical method, Método estadístico, Méthode séquentielle, Sequential method, Método secuencial, Plan expérience, Experimental design, Plan experiencia, Plan randomisé, Randomized design, Plan aleatorizado, Progiciel, Software package, Paquete programa, Randomisation, Randomization, Aleatorización, Robustesse estimateur, Estimator robustness, Robustez estimador, Science médicale, Medical science, Ciencia Medica, Statistique, Statistics, Estadística, Survie, Survival, Sobrevivencia, 05Bxx, 60E05, 62F15, 62F35, 62K99, 62N02, 62N99, 62Nxx, 62P10, Estimation paramétrique, Modèle survie, Survival model, Adaptive treatment strategies, Log-normal distribution
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
University of Pittsburgh, United States
ISSN:
0035-9254
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.22283524
Database:
PASCAL Archive

Weitere Informationen

Treatment of complex diseases such as cancer, leukaemia, acquired immune deticiency syndrome and depression usually follows complex treatment regimes consisting of time varying multiple courses of the same or different treatments.The goal is to achieve the largest overall benefit defined by a common end point such as survival. Adaptive treatment strategy refers to a sequence of treatments that are applied at different stages of therapy based on the individual's history of covariates and intermediate responses to the earlier treatments. However, in many cases treatment assignment depends only on intermediate response and prior treatments. Clinical trials are often designed to compare two or more adaptive treatment strategies. A common approach that is used in these trials is sequential randomization. Patients are randomized on entry into available first-stage treatments and then on the basis of the response to the initial treatments are randomized to second-stage treatments, and so on.The analysis often ignores this feature of randomization and frequently conducts separate analysis for each stage. Recent literature suggested several semiparametric and Bayesian methods for inference related to adaptive treatment strategies from sequentially randomized trials. We develop a parametric approach using mixture distributions to model the survival times under different adaptive treatment strategies. We show that the estimators proposed are asymptotically unbiased and can be easily implemented by using existing routines in statistical software packages.