Result: Effects of Heave Washout Settings in Aircraft Pitch Disturbance Rejection
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Physics: solid mechanics
Psychology. Ethology
FRANCIS
Further Information
In most moving-base flight simulators, the simulated aircraft motion needs to be filtered with motion washout filters to keep the simulator within its limited motion envelope. Translational motion in particular requires filtering, as the low-frequency components of the vehicle motion tend to quickly drive simulators toward their motion bounds. Commonly, linear washout filters are therefore used to attenuate the simulated motion in magnitude and in phase. It is found in many studies that the settings of these washout filters affect pilot performance and control behavior. In most of these studies, no comparison to a case with one-to-one motion cues is performed as a result of the limited motion envelope of the simulators used. In the current study, an experiment was performed in the SIMONA Research Simulator at the Delft University of Technology to investigate the effects of heave washout settings on pilot performance and control behavior in a pitch attitude control task. In addition to rotational pitch motion, heave accelerations at the pilot station that result directly from aircraft pitch were evaluated. This heave motion component could be supplied one-to-one in the simulator due to the modest size of the aircraft model, a Cessna Citation I business jet. The experiment revealed that pilot performance and control activity both increased significantly with increasing heave motion fidelity. An analysis of pilot control behavior using pilot models indicated that the enhanced performance was caused by an increase in the magnitude with which pilots responded to visual and physical motion stimuli and a decrease in the amount of visual lead that was generated by the pilots.