Result: Catalan matrix and related combinatorial identities

Title:
Catalan matrix and related combinatorial identities
Source:
Applied mathematics and computation. 215(2):796-805
Publisher Information:
Amsterdam: Elsevier, 2009.
Publication Year:
2009
Physical Description:
print, 13 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
University of Niš, Department of Mathematics, Faculty of Science, Višegradska 33, 18000 Niš, Serbia
ISSN:
0096-3003
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.22474565
Database:
PASCAL Archive

Further Information

We introduce the notion of the Catalan matrix Cn[x] whose non-zero elements are expressions which contain the Catalan numbers arranged into a lower triangular Toeplitz matrix. Inverse of the Catalan matrix is derived. Correlations between the matrix Cn[x] and the generalized Pascal matrix are considered. Some combinatorial identities involving Catalan numbers, binomial coefficients and the generalized hypergeometric function are derived using these correlations. Moreover, an additional explicit representation of the Catalan number, as well as an explicit representation of the sum of the first m Catalan numbers are given.