Result: 1.05-GHz CMOS Oscillator Based on Lateral-Field-Excited Piezoelectric AlN Contour-Mode MEMS Resonators

Title:
1.05-GHz CMOS Oscillator Based on Lateral-Field-Excited Piezoelectric AlN Contour-Mode MEMS Resonators
Source:
IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 57(1):82-87
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2010.
Publication Year:
2010
Physical Description:
print, 22 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Dispositifs à ondes acoustiques, piézoélectriques, piézorésistifs, Acoustic wave devices, piezoelectric and piezoresistive devices, Bruit phase, Phase noise, Ruido fase, Dispositif microélectromécanique, Microelectromechanical device, Dispositivo microelectromecánico, Dispositif onde acoustique, Acoustic wave device, Dispositivo onda acústica, Dispositif électromécanique, Electromechanical device, Dispositivo electromecánico, Hyperfréquence, Microwave, Hiperfrecuencia, Miniaturisation, Miniaturization, Miniaturización, Nitrure d'aluminium, Aluminium nitride, Aluminio nitruro, Niveau bruit, Noise level, Nivel ruido, Onde acoustique surface, Acoustic surface waves, Onde décimétrique, UHF wave, Onda decimétrica, Onde volume, Bulk wave, Onda volumen, Oscillateur haute fréquence, High frequency oscillator, Oscilador alta frecuencia, Plancher, Floor, Piso, Radiocommunication service mobile, Mobile radiocommunication, Radiocomunicación servicio móvil, Résonateur piézoélectrique, Piezoelectric resonator, Resonador piezoeléctrico, Technologie MOS complémentaire, Complementary MOS technology, Tecnología MOS complementario, Transducteur piézoélectrique, Piezoelectric sensor, Transductor piezoelectrico, Transistor MOS complémentaire, Complementary MOS transistor, Transistor MOS complementario
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, United States
ISSN:
0885-3010
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electronics
Accession Number:
edscal.22491746
Database:
PASCAL Archive

Further Information

This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contour-mode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-μm complementary metal-oxide-semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications.