Treffer: Skew Dyck paths, area, and superdiagonal bargraphs

Title:
Skew Dyck paths, area, and superdiagonal bargraphs
Source:
Journal of statistical planning and inference. 140(6):1550-1562
Publisher Information:
Kidlington: Elsevier, 2010.
Publication Year:
2010
Physical Description:
print, 1/4 p
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Polytechnic Institute of New York University, Brooklyn. NY 11201, United States
Politecnico di Milano, Dipartimento di Matematica. Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Università di Siena, Dipartimento di Matematica, via del Capitano 15, 53100 Siena, Italy
ISSN:
0378-3758
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.22514722
Database:
PASCAL Archive

Weitere Informationen

Skew Dyck paths are a generalization of ordinary Dyck paths, defined as paths using up steps U=(1,1), down steps D=(1,-1), and left steps L = (-1, -1), starting and ending on the x-axis, never going below it, and so that up and left steps never overlap. In this paper we study the class of these paths according to their area, extending several results holding for Dyck paths. Then we study the class of superdiagonal bargraphs, which can be naturally defined starting from skew Dyck paths.