Treffer: A formula for a doubly refined enumeration of alternating sign matrices

Title:
A formula for a doubly refined enumeration of alternating sign matrices
Source:
Advances in applied mathematics (Print). 45(1):28-35
Publisher Information:
San Diego, CA: Elsevier, 2010.
Publication Year:
2010
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Einstein Institute of Mathematics, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel
ISSN:
0196-8858
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.22744705
Database:
PASCAL Archive

Weitere Informationen

Zeilberger (1996) [12] proved the Refined Alternating Sign Matrix Theorem, which gives a product formula, first conjectured by Mills, Robbins and Rumsey (1983) [9], for the number of alternating sign matrices with given top row. Stroganov (2006) [10] proved an explicit formula for the number of alternating sign matrices with given top and bottom rows. Fischer and Romik (2009) [7] considered a different kind of doubly-refined enumeration where one counts alternating sign matrices with given top two rows, and obtained partial results on this enumeration. In this paper we continue the study of the doubly-refined enumeration with respect to the top two rows, and use Stroganov's formula to prove an explicit formula for these doubly-refined enumeration numbers.