Result: Suborbits of a point-stabilizer in the unitary group on the last subconstituent of Hermitean dual polar graphs

Title:
Suborbits of a point-stabilizer in the unitary group on the last subconstituent of Hermitean dual polar graphs
Source:
Linear algebra and its applications. 433(2):333-341
Publisher Information:
Amsterdam: Elsevier, 2010.
Publication Year:
2010
Physical Description:
print, 16 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Dept. of Math., Hunan Institute of Science and Technology, Yueyang 414006, China
Sch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing 100875, China
Math. and Inf. College, Langfang Teachers' College, Langfang 065000, China
Oxford College of Emory University, Oxford, GA 30054, United States
ISSN:
0024-3795
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.22795422
Database:
PASCAL Archive

Further Information

Let Γ be a dual polar graph in a unitary space. It is well-known that a point-stabilizer in the unitary group is transitive on the last subconstituent Λ of Γ. In this paper, we determine all the suborbits of this action, calculate its rank and the length of each suborbit. Note that the induced subgraph on Λ is quasi-strongly regular. As an application of our results, all its parameters are computed.