Treffer: A branch-and-cut algorithm for solving the Non-Preemptive Capacitated Swapping Problem
Title:
A branch-and-cut algorithm for solving the Non-Preemptive Capacitated Swapping Problem
Authors:
Source:
Discrete applied mathematics. 158(15):1599-1614
Publisher Information:
Kidlington: Elsevier, 2010.
Publication Year:
2010
Physical Description:
print, 17 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Algorithme, Algorithm, Algoritmo, Combinatoire, Combinatorics, Combinatoria, Coût, Costs, Coste, Digraphe, Digraph, Digrafo, Graphe orienté, Directed graph, Grafo orientado, Informatique théorique, Computer theory, Informática teórica, Optimisation, Optimization, Optimización, Programmation mathématique, Mathematical programming, Programación matemática, Robot, Résolution (math), Solving, Resolución (matemática), Unité, Unit, Unidad, Vertex, Vértice, 65K05, 65Kxx, 68Wxx, Branch-and-cut, Capacitated, Non-preemptive, Robot arm travel, Swapping problem
Document Type:
Fachzeitschrift
Article
File Description:
text
Language:
English
Author Affiliations:
Industrial Engineering Department, Ozyegin University, Kubak Sk No: 2, Altunizade, Istanbul 34662, Turkey
Canada Research Chair in Logistics and Transportation and CIRRELT, HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montreal, H3T 2A7, Canada
Canada Research Chair in Distribution Management and CIRRELT, HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montreal, H3T 2A7, Canada
Canada Research Chair in Logistics and Transportation and CIRRELT, HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montreal, H3T 2A7, Canada
Canada Research Chair in Distribution Management and CIRRELT, HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montreal, H3T 2A7, Canada
ISSN:
0166-218X
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Mathematics
Mathematics
Accession Number:
edscal.23156774
Database:
PASCAL Archive
Weitere Informationen
This paper models and solves a capacitated version of the Non-Preemptive Swapping Problem. This problem is defined on a complete digraph G = (V, A), at every vertex of which there may be one unit of supply of an item, one unit of demand, or both. The objective is to determine a minimum cost capacitated vehicle route for transporting the items in such a way that all demands are satisfied. The vehicle can carry more than one item at a time. Three mathematical programming formulations of the problem are provided. Several classes of valid inequalities are derived and incorporated within a branch-and-cut algorithm, and extensive computational experiments are performed on instances adapted from TSPLIB.