Result: Hashing Algorithms and Data Structures for Rapid Searches of Fingerprint Vectors

Title:
Hashing Algorithms and Data Structures for Rapid Searches of Fingerprint Vectors
Source:
Journal of chemical information and modeling. 50(8):1358-1368
Publisher Information:
Washington, DC: American Chemical Society, 2010.
Publication Year:
2010
Physical Description:
print,
Original Material:
INIST-CNRS
Subject Terms:
Chemistry, Chimie, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Chimie, Chemistry, Chimie generale et chimie physique, General and physical chemistry, Théorie des réactions, cinétique générale. Catalyse. Nomenclature, documentation chimique, informatique chimique, Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry, Généralités. Nomenclature, documentation chimique, informatique chimique, General. Nomenclature, chemical documentation, computer chemistry, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Traitement des données. Listes et chaînes de caractères, Data processing. List processing. Character string processing, Systèmes d'information. Bases de données, Information systems. Data bases, Algorithmique, Algorithmics, Algorítmica, Base de données, Database, Base dato, Calcul réparti, Distributed computing, Cálculo repartido, Chaîne longue, Long chain, Cadena larga, Chaîne moléculaire, Molecular chain, Cadena molecular, Elagage, Pruning(tree), Poda, Empreinte digitale, Fingerprint, Huella digital, Groupe fonctionnel, Functional group, Grupo funcional, Hachage, Hashing, Haute performance, High performance, Alto rendimiento, Modélisation, Modeling, Modelización, Métrique, Metric, Métrico, Similitude, Similarity, Similitud, Structure donnée, Data structure, Estructura datos, Base donnée très grande, Very large databases, Base de datos a gran escala
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
School of Information and Computer Sciences, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697-3435, United States
ISSN:
1549-9596
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

General chemistry and physical chemistry
Accession Number:
edscal.23170098
Database:
PASCAL Archive

Further Information

In many large chemoinformatics database systems, molecules are represented by long binary fingerprint vectors whose components record the presence or absence of particular functional groups or combinatorial features. To speed up database searches, we propose to add to each fingerprint a short signature integer vector of length M. For a given fingerprint, the i component of the signature vector counts the number of 1-bits in the fingerprint that fall on components congruent to i modulo M. Given two signatures, we show how one can rapidly compute a bound on the Jaccard-Tanimoto similarity measure of the two corresponding fingerprints, using the intersection bound. Thus, these signatures allow one to significantly prune the search space by discarding molecules associated with unfavorable bounds. Analytical methods are developed to predict the resulting amount of pruning as a function of M. Data structures combining different values of M are also developed together with methods for predicting the optimal values of M for a given implementation. Simulations using a particular implementation show that the proposed approach leads to a 1 order of magnitude speedup over a linear search and a 3-fold speedup over a previous implementation. All theoretical results and predictions are corroborated by large-scale simulations using molecules from the ChemDB. Several possible algorithmic extensions are discussed.