Result: Optimization, resolution and application of composite compact finite difference templates

Title:
Optimization, resolution and application of composite compact finite difference templates
Source:
Applied numerical mathematics. 61(1):108-130
Publisher Information:
Kidlington: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Fonctions d'une variable complexe, Functions of a complex variable, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Algèbre linéaire numérique, Numerical linear algebra, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Algèbre linéaire numérique, Numerical linear algebra, Algebra lineal numérica, Analyse numérique, Numerical analysis, Análisis numérico, Analyse spectrale, Spectral analysis, Análisis espectral, Calcul variationnel, Variational calculus, Cálculo de variaciones, Condition aux limites, Boundary condition, Condiciones límites, Equation algébrique, Algebraic equation, Ecuación algebraica, Equation non linéaire, Non linear equation, Ecuación no lineal, Equation transcendante, Transcendental equation, Ecuación trascendente, Estimation erreur, Error estimation, Estimación error, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode optimisation, Optimization method, Método optimización, Méthode spectrale, Spectral method, Método espectral, Programmation mathématique, Mathematical programming, Programación matemática, Stabilité numérique, Numerical stability, Estabilidad numérica, Stabilité spectrale, Spectral stability, Estabilidad espectral, Valeur propre, Eigenvalue, Valor propio, Vecteur propre, Eigenvector, Vector propio, 30XX, 49XX, 65F15, 65H17, 65K10, 65Kxx, Compact finite differencing, Multi-parameter optimization, Spatial resolution errors
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Naval Undersea Warfare Center, Newport, RI 02842, United States
ISSN:
0168-9274
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.23432838
Database:
PASCAL Archive

Further Information

Spectral-like compact finite differencing schemes are capable of achieving high spatial efficiency of complex physics in irregular domains with difficult boundary conditions. Their low-resolution errors are commonly reached through large stencils sizes and/or parameter optimization. The field stencils require boundary (and near boundary) stencils to close the composite template for implicit solution. Present practices often optimize each participating stencil individually with aim toward insuring global stability and/or spectral-like characteristics. However, analyzing each stencil separately incorrectly quantifies the local resolution errors. A new process is proposed that properly quantifies the dispersive and dissipative errors of optimized templates in the spectral domain. The templates are optimized at the boundary and adjacent interior points. Both tri- (five-point) and pentadiagonal (seven-point) compact systems are treated in this fashion. A spectral eigenvalue analysis shows the resultant composites to be numerically stable. An a priori procedure is formulated that quantifies the expected reduction in the local predictive error due specifically to the improved template spatial resolution. Three test problems are selected from the Computational Aeroacoustics workshops to demonstrate their improved predictive accuracy. Finally, the present technique provides closure for exercising the three essential criteria of numerical accuracy, stability and resolution when developing composite compact finite difference templates for practical applications.