Treffer: Network Coding Theory Via Commutative Algebra

Title:
Network Coding Theory Via Commutative Algebra
Source:
IEEE transactions on information theory. 57(1):403-415
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2011.
Publication Year:
2011
Physical Description:
print, 18 ref
Original Material:
INIST-CNRS
Subject Terms:
Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Telecommunications et theorie de l'information, Telecommunications and information theory, Théorie de l'information, du signal et des communications, Information, signal and communications theory, Théorie de l'information, Information theory, Théorie du signal et des communications, Signal and communications theory, Codage, codes, Coding, codes, Télécommunications, Telecommunications, Systèmes, réseaux et services de télécommunications, Systems, networks and services of telecommunications, Transmission et modulation (techniques et équipements), Transmission and modulation (techniques and equipments), Algorithme, Algorithm, Algoritmo, Alphabet, Alfabeto, Codage linéaire, Linear coding, Codificación lineal, Code convolutif, Convolutional code, Código convolutivo, Code optimal, Optimal code, Código optimal, Diffusion donnée, Data broadcast, Difusion dato, Diffusion information, Information dissemination, Difusión información, Développement série, Series expansion, Desarrollo serie, Matroïde, Matroid, Matroide, Multidestinataire, Multicast, Multidestinatario, Régulateur tension, Voltage regulators, Système cyclique, Cyclic system, Sistema cíclico, Système dynamique, Dynamical system, Sistema dinámico, Série entière, Power series, Serie potencias, Code construction, cyclic networks, discrete valuation ring, invariant factor of free submodule, matroid duality, network coding, principal ideal domain
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Institute of Network Coding and Department of Information Engineering, The Chinese University of Hong Kong, Hong-Kong
ISSN:
0018-9448
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.23746806
Database:
PASCAL Archive

Weitere Informationen

The fundamental result of linear network coding asserts the existence of an optimal code on an acyclic single-source multicast network when the symbol field is sufficiently large. The restriction to acyclic networks turns out to stem from the customary structure of the symbol alphabet as a field. Adopting data units belonging to a discrete valuation ring (DVR), that is, a PID with a unique maximal ideal, much of the network coding theory extends to cyclic single-source multicast networks. Convolutional network coding is the instance of DVR-based network coding when the DVR consists of rational power series over the symbol field. Meanwhile, a field can be regarded as a degenerate DVR since it is a PID with the maximal ideal 0. Thus the conventional field-based network coding theory becomes a degenerate version of the DVR-based theory. This paper also delves into the issue of constructing optimal network codes on cyclic networks. Inspired by matroid duality theory, a novel method is devised to take advantage of all existing acyclic algorithms for network code construction. It associates every cyclic network with a quadratically large acyclic network so that essentially every optimal code on the acyclic network directly induces one on the cyclic network.