Treffer: Optimization architecture for joint multi-path routing and scheduling in wireless mesh networks
UEI, ENSTA-Paris Tech, Paris, France
Institute of Computer Science and Information Engineering, National Ilan University, Ilan, Tawain, Province of China
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
In Wireless Mesh Networks (WMN), the optimal routing of data depends on the link capacities which are determined by link scheduling. The optimal performance of the network, therefore, can only be achieved by joint routing and scheduling optimization. Although the joint single-path routing and scheduling optimization problem has been extensively studied, its multi-path counterpart within wireless mesh networks has not yet been fully investigated. In this paper, we present an optimization architecture for joint multi-path QoS routing and the underlying wireless link scheduling in wireless mesh networks. By employing the contention matrix to represent the wireless link interference, we formulate a utility maximization problem for the joint multi-path routing and MAC scheduling and resolve it using the primal-dual method. Since the multi-path routing usually results in the non-strict concavity of the primal objective function, we first introduce the Proximal Optimization Algorithm to get around such difficulty. We then propose an algorithm to solve the routing subproblem and the scheduling subproblem via the dual decomposition. Simulations demonstrate the efficiency and correctness of our algorithm.