Treffer: Invariant subspaces of finite codimension in Banach spaces of analytic functions

Title:
Invariant subspaces of finite codimension in Banach spaces of analytic functions
Authors:
Source:
Journal of mathematical analysis and applications. 373(1):1-12
Publisher Information:
Amsterdam: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 35 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Purdue University, 150 N. University St., W. Lafayette. IN 47907, United States
ISSN:
0022-247X
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.23752692
Database:
PASCAL Archive

Weitere Informationen

We give a characterization of invariant subspaces of finite codimension in Banach spaces of vector-valued analytic functions in several variables, where invariant refers to invariance under multiplication by any polynomial. We obtain very weak conditions under which our characterization applies, that unifies and improves a number of previous results. In the vector-valued case, the results are new even for one complex variable. As a concrete application in several variables, we consider the Bergman space on a strictly pseudo-convex domain, and we improve previous results (assuming C∞-boundary) to the case of C2-boundary. .