Result: Infinitely many solutions for diffusion equations without symmetry
Title:
Infinitely many solutions for diffusion equations without symmetry
Authors:
Source:
Nonlinear analysis. 74(4):1290-1303
Publisher Information:
Amsterdam: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 26 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Analyse non linéaire, Nonlinear analysis, análisis no lineal, Equation diffusion, Diffusion equation, Ecuación difusión, Modèle mathématique, Mathematical model, Modelo matemático, Système hamiltonien, Hamiltonian system, Sistema hamiltoniano, 37Jxx, 49R50, 65K10, 65Kxx, (C)c-condition, Unbounded Hamiltonian systems, Variational methods
Document Type:
Academic journal
Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
Department of Mathematics, Southeast University, Nanjing, Jiangsu, 210096, China
Department of Mathematics, Southeast University, Nanjing, Jiangsu, 210096, China
ISSN:
0362-546X
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.23853214
Database:
PASCAL Archive
Further Information
We consider the following diffusion system: {∂tu ― Δxu + b(t, x)∇xu + V(x)u = Hv(t, x, u, v), ∀ (t, x) ∈ R × RN, ―∂tv ― Δxv + b(t, x)∇xv + V(x)v = Hu(t, x, u, v) which is an unbounded Hamiltonian system in L2 (R x RN, R2m), z:= (u, v): R x RN → Rm x Rm, b ∈ C(R × RN, RN), V ∈ C(RN, R) and H ∈ C1(R x RN x R2m, R). Suppose that H, b and V depend periodically on t and x, and that H(t, x, z) is superquadratic in z as |z| → ∞. Without a symmetry assumption on H, we establish the existence of infinitely many geometrically distinct solutions via a variational approach.