Result: Infinitely many solutions for diffusion equations without symmetry

Title:
Infinitely many solutions for diffusion equations without symmetry
Source:
Nonlinear analysis. 74(4):1290-1303
Publisher Information:
Amsterdam: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 26 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
Department of Mathematics, Southeast University, Nanjing, Jiangsu, 210096, China
ISSN:
0362-546X
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.23853214
Database:
PASCAL Archive

Further Information

We consider the following diffusion system: {∂tu ― Δxu + b(t, x)∇xu + V(x)u = Hv(t, x, u, v), ∀ (t, x) ∈ R × RN, ―∂tv ― Δxv + b(t, x)∇xv + V(x)v = Hu(t, x, u, v) which is an unbounded Hamiltonian system in L2 (R x RN, R2m), z:= (u, v): R x RN → Rm x Rm, b ∈ C(R × RN, RN), V ∈ C(RN, R) and H ∈ C1(R x RN x R2m, R). Suppose that H, b and V depend periodically on t and x, and that H(t, x, z) is superquadratic in z as |z| → ∞. Without a symmetry assumption on H, we establish the existence of infinitely many geometrically distinct solutions via a variational approach.