Treffer: Solving the vendor-buyer integrated inventory system with arithmetic-geometric inequality

Title:
Solving the vendor-buyer integrated inventory system with arithmetic-geometric inequality
Source:
Mathematical and computer modelling. 53(5-6):991-997
Publisher Information:
Kidlington: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 26 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Méthodes de calcul scientifique (y compris calcul symbolique, calcul algébrique), Methods of scientific computing (including symbolic computation, algebraic computation), Analyse assistée, Computer aided analysis, Análisis asistido, Analyse numérique, Numerical analysis, Análisis numérico, Arithmétique, Arithmetics, Aritmética, Calcul variationnel, Variational calculus, Cálculo de variaciones, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Modèle mathématique, Mathematical model, Modelo matemático, Modèle économique, Economic model, Modelo económico, Méthode optimisation, Optimization method, Método optimización, Politique optimale, Optimal policy, Política óptima, Programmation mathématique, Mathematical programming, Programación matemática, Semiconducteur, Semiconductor materials, Semiconductor(material), Solution optimale, Optimal solution, Solución óptima, Temps réponse, Response time, Tiempo respuesta, 49J30, 49K30, 49XX, 65K10, 65Kxx, Algebraic optimization, Arithmetic-geometric inequality, Economic lot size, Integrated production inventory model, Two-stage supply chain
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Management, School of Business, Instituto Tecnológico y de Estudios Superiores de Monterrey, ITESM, Campus Monterrey, Mexico, E. Garza Sada 2501 Sur, C.P. 64 849, Monterrey, N.L., Mexico
Department of Industrial and Systems Engineering, School of Engineering, Instituto Tecnológico y de Estudios Superiores de Monterrey, ITESM, Campus Monterrey, Mexico, E. Garza Sada 2501 Sur, C.P. 64 849, Monterrey, N.L., Mexico
Department of Industrial Engineering and Systems Engineering, Chung Yuan Christian University, Chungli 32023, Tawain, Province of China
Department of Information Science and Control Engineering, Nagaoka University of Technology, Nagaoka, Japan
ISSN:
0895-7177
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.23865239
Database:
PASCAL Archive

Weitere Informationen

In the past, economic order quantity (EOQ) and economic production quantity (EPQ) were treated independently from the viewpoints of the buyer or the vendor. In most cases, the optimal solution for one player was non-optimal to the other player. In today's competitive markets, close cooperation between the vendor and the buyer is necessary to reduce the joint inventory cost and the response time of the vendor-buyer system. The successful experiences of National Semiconductor, Wal-Mart, and Procter and Gamble have demonstrated that integrating the supply chain has significantly influenced the company's performance and market share (Simchi-Levi et al. (2000) [1]). Recently, Yang et al. (2007) [2] presented an inventory model to determine the economic lot size for both the vendor and buyer, and the number of deliveries in an integrated two stage supply chain. In this paper, we present an alternative approach to determine the global optimal inventory policy for the vendor-buyer integrated system using arithmetic-geometric inequality.