Treffer: Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography

Title:
Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography
Source:
Applied mathematics and computation. 217(12):5754-5767
Publisher Information:
Amsterdam: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 29 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Fonctions réelles, Real functions, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Analyse numérique dans des espaces abstraits, Numerical analysis in abstract spaces, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Algorithme parallèle, Parallel algorithm, Algoritmo paralelo, Analyse numérique, Numerical analysis, Análisis numérico, Calcul variationnel, Variational calculus, Cálculo de variaciones, Complexité calcul, Computational complexity, Complejidad computación, Fonction continue, Continuous function, Función continua, Implémentation, Implementation, Implementación, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode optimisation, Optimization method, Método optimización, Méthode séquentielle, Sequential method, Método secuencial, Problème inverse, Inverse problem, Problema inverso, Programmation mathématique, Mathematical programming, Programación matemática, Recuit simulé, Simulated annealing, Recocido simulado, Tomographie, Tomography, Tomografía, 26A46, 49XX, 65J22, 65K10, 65Kxx, Critical temperature, Exchange frequency, Global optimization, Temperature parallel simulated annealing
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, United States
ISSN:
0096-3003
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.23885087
Database:
PASCAL Archive

Weitere Informationen

The simulated annealing (SA) algorithm is a well-established optimization technique which has found applications in many research areas. However, the SA algorithm is limited in its application due to the high computational cost and the difficulties in determining the annealing schedule. This paper demonstrates that the temperature parallel simulated annealing (TPSA) algorithm, a parallel implementation of the SA algorithm, shows great promise to overcome these limitations when applied to continuous functions. The TPSA algorithm greatly reduces the computational time due to its parallel nature, and avoids the determination of the annealing schedule by fixing the temperatures during the annealing process. The main contributions of this paper are threefold. First, this paper explains a simple and effective way to determine the temperatures by applying the concept of critical temperature (TC). Second, this paper presents systematic tests of the TPSA algorithm on various continuous functions, demonstrating comparable performance as well-established sequential SA algorithms. Third, this paper demonstrates the application of the TPSA algorithm on a difficult practical inverse problem, namely the hyperspectral tomography problem. The results and conclusions presented in this work provide are expected to be useful for the further development and expanded applications of the TPSA algorithm.