Treffer: Variational sets: Calculus and applications to nonsmooth vector optimization

Title:
Variational sets: Calculus and applications to nonsmooth vector optimization
Source:
Nonlinear analysis. 74(6):2358-2379
Publisher Information:
Amsterdam: Elsevier, 2011.
Publication Year:
2011
Physical Description:
print, 8 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Ordre, treillis, structures algébriques ordonnées, Order, lattices, ordered algebraic structures, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Topologie. Variétés et complexes cellulaires. Analyse globale et analyse sur variétés, Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds, Analyse globale, analyse sur des variétés, Global analysis, analysis on manifolds, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Analyse non linéaire, Nonlinear analysis, análisis no lineal, Calcul variationnel, Variational calculus, Cálculo de variaciones, Condition optimalité, Optimality condition, Condición optimalidad, Inégalité variationnelle, Variational inequality, Desigualdad variacional, Modèle mathématique, Mathematical model, Modelo matemático, Méthode optimisation, Optimization method, Método optimización, Solution faible, Weak solution, Solución débil, Stabilité numérique, Numerical stability, Estabilidad numérica, 06Axx, 49J40, 49XX, 58E35, 65K10, 65K15, 65Kxx, Multi-application, Set-valued mapping, 49J53, 90C29, Calculus rules, Higher-order variational sets of various kinds, Optimality conditions, Semi-compactness, Variational inequalities, Weak solutions
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, University of Notural Sciences of Hochiminh City, 227 Nguyen Van Cu, District 5, Hochiminh City, Namibia
Department of Mathematics, International University of Hochiminh City, Linh Trung, Thu Duc, Hochiminh City, Namibia
Department of Mathematics, College of Science, Cantho University, Ninhkieu District, Cantho City, Namibia
ISSN:
0362-546X
Rights:
Copyright 2015 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.23911132
Database:
PASCAL Archive

Weitere Informationen

We develop elements of calculus of variational sets for set-valued mappings, which were recently introduced in Khanh and Tuan (2008) [1,2] to replace generalized derivatives in establishing optimality conditions in nonsmooth optimization. Most of the usual calculus rules, from chain and sum rules to rules for unions, intersections, products and other operations on mappings, are established. Direct applications in stability and optimality conditions for various vector optimization problems are provided.